FAST NUMERICAL IMPLEMENTATION OF THE MDR TRANSFORMATIONS
نویسندگان
چکیده
منابع مشابه
A fast implementation of 3-D binary morphological transformations
This paper proposes a fast algorithm for implementing the basic operation of Minkowski addition for the special case of binary three-dimensional (3-D) images, using 3-D structuring elements of arbitrary size and shape. The application of the proposed algorithm for all the other morphological transformations is straightforward, as they can all be expressed in terms of Minkowski addition. The eff...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولImplementation of Affine Transformations
1. Pointwise. Each point in the dest is determined from the corresponding point in the src. We start with 3 points specifying the initial coordinate space and the 3 corresponding points that specify the transformed coordinate space, and transform an entire image pointwise by the transformation (1). 2. Sequential. The entire image is successively transformed by a sequence of shear, scale and tra...
متن کاملA Fast, High-Order Method in Two Dimensions: Numerical Implementation
In this chapter, we present several significant improvements to the original numerical implementation of the two-dimensional method introduced in [13], as described in the previous chapter. The numerical solution of the associated approximate integral equation (2.3) consists of two main parts: efficient, high-order numerical quadrature rules and an efficient linear solver. The numerical evaluat...
متن کاملStable Unitary Integrators for the Numerical Implementation of Continuous Unitary Transformations
The technique of continuous unitary transformations has recently been used to provide physical insight into a diverse array of quantum mechanical systems. However, the question of how to best numerically implement the flow equations has received little attention. The most immediately apparent approach, using standard Runge–Kutta numerical integration algorithms, suffers from both severe ineffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Facta Universitatis, Series: Mechanical Engineering
سال: 2018
ISSN: 2335-0164,0354-2025
DOI: 10.22190/fume180526023b